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ABSTRACT

Middle ear models have been successfully developed for many years. Most of those are implemented in
the frequency domain, where physical equations are more easily derived. This is problematic, however,
when it comes to model non-linear phenomena, especially in the cochlea, and because a frequency-
domain implementation may be less intuitive. This research explores a different approach, based on a
time-domain implementation, fitted to impedance data. It is adapted from a previous work for the cat
and focuses here on the human ear: volume velocity samples are distributed uniformly in space and
updated periodically to simulate the propagation of the sound wave in the ear. The modeling approach
is simple, yet it can quantitatively reproduce the major characteristics of the human middle ear transmis-
sion, and can qualitatively capture forward and reverse power transmission - a key feature of this time-
domain implementation. These results suggest that complex, multi-modal propagation observed on the
TM may not be critical to proper sound transmission along the ear. Besides, model predictions reveal that
impedance and velocimetry measurements may be inconsistent with each other, hypothetically because

velocimetry protocols could alter the middle ear.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction
1.1. Previous work

Modeling the ear has been a path to refine our understanding of
the hearing process. With the development of powerful computa-
tional tools, different theories have been studied in order to better
understand the ear behavior and isolate the role of its components.
The previously-published models can be classified into two broad
categories: lumped-parameter models, and distributed models.
Each of these may be implemented in either the time or fre-
quency-domain.

Lumped-parameter models use the analogy between acoustic
systems and the conventional electrical circuit representation. Each
physical element is then represented by a simple association of basic
circuit components: mass elements (e.g., bones) are modeled as
inductors, stiffness as capacitors (e.g., ligaments) and friction as
resistors. This approach has been first used to model the cochlea
(Wegel and Lane, 1924). A key work in the field was later presented
by Zwislocki (1957, 1962): his approach was to model the entire
ossicular chain (OC) of the cat by a frequency-domain lumped-
parameter circuit with parameters adjusted to match actual imped-

* Corresponding author. Address: 129 avenue du General Leclerc, 75014 Paris,
France.
E-mail addresses: pierre@mimosaacoustics.com (P. Parent), jontalle@uiuc.edu
(J.B. Allen).

0378-5955/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.heares.2009.12.015

ance measurements. In order to reduce the number of parameters to
adjust simultaneously, the complexity of the model was increased
step by step, starting from limited subsystems (e.g., disarticulated
stapes experiment) to the fully functional ear. This method has also
been used by Lynch et al. (1982). These models are particularly
relevant to simulate simple physical elements which can easily be
approximated by basic circuit analogies; however, they are not
suitable to model more complex distributed structures with large
delays, like the tympanic membrane (TM) and when so used, can
be inaccurate above a few kilohertz. Shaw’s 1977 model of the TM
as a double-piston source (Shaw, 1977; Shaw and Stinson, 1981) en-
abled his model to produce a modal TM response, but limited both in
its accuracy and its upper cut-off frequency (e.g., 6 kHz). Puria and
Allen (1998) and O’Connor and Puria (2008) circumvented this lim-
itation by associating a lumped-parameter model for the OC with a
transmission line modeling the TM.

Wave digital filters are a refinement of this transmission line
approach. Such filters are obtained by transforming the analog cir-
cuit so that it does not process state variables (pressure and vol-
ume velocity) but wave variables (forward and backward
components of the wave). Their main theoretical interest is that
the structure directly deals with the wave components and can
be designed to be much more computationally efficient than con-
ventional circuits. Wave digital filters have been successfully ap-
plied to model the hearing path (Giguere and Woodland, 1994)
but the resulting model topology is quite far from physical reality,
and therefore lacks obvious intuition.
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Distributed models may be used to accurately simulate more
complex anatomical structures of the TM. Typically, those models
rely on a finite elements analysis (FEA), or an asymptotic approach
(Funnel and Laszlo, 1978; Rabbitt and Holmes, 1986; Funnel et al.,
1987). A clear strength of FEA models is that they can account for
complex mechanical and physical constraints by their detailed rep-
resentations of the eardrum structure. Their main drawbacks reside
in their complexity, especially to generate the mesh representing
the 3-D structure to be analyzed, as well as their greater computa-
tional time. A closely related model of the cat TM using shell theory
has been presented by Fay (2001) and Fay et al. (2002).

1.2. Time-domain model

Most of these published models are implemented in the fre-
quency domain. This is relevant because equations describing the
wave propagation are typically defined there and lumped circuit
elements are easier to deal with (variables are related by fre-
quency-dependent multiplications instead of time-domain convo-
lutions). However, frequency-domain models are inherently
limited, or even fail, when dealing with non-linear and/or time-
varying phenomena, which can only be modeled in the time do-
main. Time dependent non-linearities are critical, both in the mid-
dle ear, and the cochlea (Sen and Allen, 2006). Also, time-domain
models are especially convenient when modeling large-delays sys-
tems, such as the TM. Those models can be made more intuitive
and can lead to sparse, recursive, computationally efficient imple-
mentations. For example, the wave model of Kelly and Lochbaum
(1963) is a well-known and highly successful model of the time-
varying vocal tract.

This study aims at exploring such a wave-based model design
for the human middle ear. Eventually, we suspect such a model
could be easier to implement and interpret, and could also provide
an important simulation tool to study non-linear and time-varying
behavior. Such a model has already been published for the cat (Par-
ent and Allen, 2007) and is extended here to the normal human
ear, and to several common pathologies. A this early stage in the
model development, the goal is not to compete with the extent
and accuracy of previously-published models, but rather to dem-
onstrate that a time-domain approach is feasible, and that it pro-
vides more physical insight about wave propagation in the
middle ear. We hope that future work in this direction will im-
prove the model accuracy and predictive power.

This approach is particularly relevant in discriminating between
the forward and backward wave components. This more detailed
description enables us to compute propagation delays on the for-
ward/backward components, and on the total wave (sum of the
two components). These delays are distinct, but related to the
modal delays measured from pressure and velocity measurements,
and represent different (more precise) estimates of the wave front
propagation time.

1.3. Velocimetry and impedance

Experimental measurements of the middle ear may be divided
into two broad categories. Velocimetry experiments consist of
measuring the displacement or velocity of specific elements of
the middle ear (typically, ossicles) while stimulated by a canal or
free-field sound source. Those measurements are usually difficult,
requiring surgical operation of the target ear to place the probe
or measurement device in the ossicles chain. In general, they are
carried out on dead temporal bones that have been frozen, or on
live subjects during implant operations.

The alternative approach is to leave the middle ear space un-
touched and to infer its status from a pressure measurement in
the ear canal, as done with clinical impedance measurements

(e.g., either tympanometry or wideband reflectance). In these
cases, the idea is to rely on a specific protocol and a specially cal-
ibrated instrument to estimate the input impedance of the ear
and assess its status (Stinson et al., 1982; Allen, 1986). The disad-
vantage of such methods is that they cannot directly estimate the
vibrations of the different elements of the middle ear, but only
evaluate and infer its behavior as a whole. A further disadvantage
is the need for a verifiable model of the ear canal impedance, so as
to allow for the interpretation of the clinical impedance measure-
ments. The advantage is that they are non-invasive and they eval-
uate the ear in its normal condition, on large number of ears, on a
clinical basis.

The model presented here is based on such canal impedance
measurements, and is designed to match both normal and patho-
logical ears. In order to further validate the model, we also com-
pare its results to velocimetry measurements carried out in
temporal bones. We will focus our comparison on the measure-
ments reported by O’Connor and Puria (2008), who have presented
a similar model for the human middle ear, but implemented in the
frequency domain. Their model results show good agreement with
their velocimetry measurements, but not with any canal imped-
ance data. Since our model has been designed to match impedance
data, it is interesting to see if we find the reciprocal discrepancy
with velocimetry that they find with impedance.

2. Methods
2.1. Presentation of the wave model

This section reviews the basic principles of the implementation,
but the reader is referred to the original article for the full details
(Parent and Allen, 2007). The model assumes a single-dimension
propagation of forward and backward plane waves. The classical
plane wave solution of the d’Alembert wave equation stipulates
that the propagating volume velocity wave is the sum of two com-
ponents: one going in the forward direction (from the canal to the
cochlea, say from left to right in our representation), and one back-
ward. Each velocity component is then represented by a vector of
samples representing the amplitude of the plane wave at various
positions in the propagation path. This model is based on reflec-
tance; i.e., its parameters are adjusted so that it matches reflec-
tance data measured on normal human ears by Voss and Allen
(1994).

The transformation of the amplitude sample from one position
to the next depends on the local physical characteristics of the
propagation medium. In the simplest case, the medium is homoge-
neous and the wave propagates unaltered, except for a small (e.g.,
0.01%) attenuation to simulate viscous and thermal losses. Such is
the case of the ear canal, which is approximated by a straight, air-
filled cylinder - a valid approximation for the range of relevant fre-
quencies (Stinson, 1985). A high sampling frequency is chosen,
appropriate for the more complex phenomena on the TM and in
the OC, then after each sampling period, the velocity amplitude
at a given position is transferred to its direct neighbor (Parent
and Allen, 2007). The same procedure occurs simultaneously on
the forward and backward wave vectors. The forward path is fed
at its input by the stimulus signal (here, a unity pulse) and the time
reflectance is retrieved from the first (leftmost) sample of the back-
ward wave. The propagation on the TM and in the OC is more com-
plex and is described in the next sections.

It is difficult to reliably estimate the canal length from clinical
canal pressure measurements. Voss and Allen (1994) found an
average estimated length of 6.6 mm, with a standard deviation of
3.4 mm (measurements on 10 live human subjects). In our model,
this length is roughly equivalent to the distance “under” the TM
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Fig. 1. Discretized tympanic membrane model for N = 5. (a) Position of the TM in the ear canal. (b) The decomposition in annuli, respecting the circular geometry of the
membrane. (¢) The one-dimension model that we actually use, derived from the previous one by applying mass conservation, indicated by the different widths of the stripes.
The number of samples on the TM is 2N — 1, i.e,, 9 in this example with N = 5. (a) Ear canal termination. (b) Annular discretization. (c) 1-D representation with mass

conservation.

(see Fig. 1a), so we have set our canal length before reaching the
upper tip of the TM to 1 mm. Under some conditions, when match-
ing specific data sets, we have used slightly different values.

The original model for the cat was fitted to impedance data
from Allen (1986). It was then compared to ossicles displacements
measurements from Guinan and Peake (1967). Since this is not a
ad-hoc model, the numerical values used for the various parame-
ters have not been chosen with the sole objective to match exper-
imental data: rather they have been adjusted to get the best match,
but constrained to be similar to previously-published values
(Lynch et al., 1982; Puria and Allen, 1998), and to make physically
sense. The numerical values used for the present human model
have been modified to take into account the anatomical differences
between the two species. Some parameters are readily available
(canal dimensions, TM area, stapes footplate area) but many un-
known middle ear parameters have been derived from the cat’s
by applying a scale factor, defined by the ratio of the TM areas

for each species, \/m The stiffness and resistances have then

been adjusted manually to fit experimental data, constrained by a
physical range of variation.

2.2. Tympanic membrane model

The TM is positioned at an angle at the canal termination, as
shown in Fig. 1a. This angle has been estimated in the human mod-
el from measurements of the ear canal diameter and the TM area.
Today it is commonly recognized that, in mammals, the TM brings
a significant delay (Olson, 1998), which could be accounted for, in
part, by a reduced speed of sound on the eardrum (Puria and Allen,
1998). No direct delay measurements in the human are available to
our knowledge!, so the speed of sound on the TM has been manually
adjusted so that our model fits the experimental data. We have even-
tually used a speed on the TM which is 1.5 times slower than in the
canal. For comparison, our cat model uses a factor of 3.4.

We demonstrate this result using a one-dimension plan-wave
transmission line approximation. An element of the TM is repre-
sented by an association of per unit length series mass M and shunt
stiffness K, defining the propagation factor

I' = sVMK, (1)

! Some inferences of this delay have recently become available, based on standing
wave patterns measured using various laser measurements (de La Rochefoucauld and
Olson, 2009; Cheng et al., 2009).

where s is the Laplace frequency. The speed of sound on the TM ¢,
is then defined by

S
I'=—, 2
o (2)
thus
1
Con = ———— . 3
m= 3)

Since the TM density and stiffness are greater than in air, it is nec-
essary that ¢, < Cgir.

Following the suggestion from Puria and Allen (1998), that the
TM could be represented by a series of N concentric annuli of vary-
ing impedance, we show the intermediate representation of
Fig. 1b: each annulus has a different impedance due to the varying
curvature of the TM, which ranges from the ear canal impedance at
the periphery to the middle ear impedance at the center. This is our
hypothesis to explain the impedance-matching role of the TM.
Note that the TM is not exactly circular, nor symmetric, but this
representation is relevant from the modeling point of view. A cir-
cular representation would require a two-dimension processing,
which we avoid in this study: it is then further simplified into
the one-dimension model of Fig. 1c, where the width of the stripes
corresponds to the equivalent area of the corresponding annulus.
When input onto the TM, samples are scaled depending on those
areas, so that more energy is fed at the periphery than at the
center.

The impedance function on the TM surface is hard to directly
estimate and, to our knowledge, it has not been investigated. As
a first attempt, for the cat, we have assumed an exponential varia-
tion from the periphery to the center, the periphery being matched
to the canal and the center being matched to the middle ear. This
impedance distribution is also assumed symmetric with respect to
the TM center. The middle ear impedance has been estimated to be
30 times greater than in the canal (Bekesy and Rosenblith, 1951)
and so the transformer ratio brought by the TM is 30/N2, where
Ny, is the OC lever ratio (Guinan and Peake, 1967). It is not certain
that these assumptions apply to the human ear, but motivated by
our cat model we have nonetheless used the same derivation for
the human reflection function. Note that this reflection function
is not to be considered as a definitive model for the TM; in fact,
it is merely a predictive stepping stone, used for the lack of exper-
imental data. This approximation is justified by the similarities be-
tween the two species and is confirmed by the success of our
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results. We refer the reader to our original model (Parent and Allen,
2007) for a more detailed discussion on the TM impedance
function.

Due to the TM inclination, the canal cross-section area tends to
zero towards its termination, resulting in an increasingly large

0.4

-40 -20 0 20 40
Annulus number (TM center is at 0)

Fig. 2. Tympanic membrane reflection coefficient for a discretized membrane with
39 annuli, i.e., 77 samples. Note the asymmetry in %y ... For the upper part of the
TM (N > 0), Zumsec Starts around 0.2 and slightly rises to 0.3 at the TM center
(N = 0). As the canal cross-section area gets smaller and smaller, the impedance in
the canal increases and the reflection coefficient decreases significantly. Zyn/ec is
zero at N = 7, then negative.

| PROPAGATION UNDER
THE TM (in air)

characteristic impedance. The resulting reflection coefficient is
shown in Fig. 2, for N = 39 annuli. Its non-symmetrical shape is
determined by the combined influence of the TM impedance, sym-
metrically increasing from the periphery to the center, and the ca-
nal impedance, linearly increasing towards its termination. At the
TM upper tip, the canal area is large and the reflection coefficient
is 0.2 (it is greater than O to simulate a slight impedance mis-
match). It then slightly rises to 0.3 at N = —10, remaining constant
to the TM center, at N = 0. From this position, the TM impedance
begins to decrease, as the canal impedance still increases (inversely
as the area), resulting in a smaller reflection coefficient. It crosses
zero at N =7 and is negative for the remaining sections of the
TM lower part N > 7.

At the canal termination, the canal area tends to 0, resulting in
an impedance tending to infinity and a reflection coefficient tend-
ing to —1. Preliminary simulations have revealed that such large
reflections are probably inappropriate. As a consequence, we have
slightly decreased the negative reflection coefficients (in absolute
value), corresponding to the canal termination. In practice, this
has been done by scaling the negative values by 0.8.

The interface between the canal and TM wave models is sum-
marized in Fig. 3. This is one of the key points of the model. The
idea is that the single canal transmission line feeds several lines
(two per annulus, except for the center) on the TM. The last canal
sample is split onto the different delay lines, according to the ratio
of the annuli areas over the entire TM area, then propagated along
a portion of air corresponding to the remaining canal space, before
hitting the TM (see Fig. 1a). At this point the lines meet the junc-

REFLECTION /
TRANSMISSION

THE T™M

CONCHA

OSSICULAR

@ an

CHAIN

(111 (V) V)

Fig. 3. Interface between the ear canal and the tympanic membrane. Forward and backward propagation path are represented by solid and hollow arrow heads, respectively.
Rectangles represent transmission lines delays with length proportional to delay. In the first section from the left (Section I), at the canal termination, the last forward sample
is multiplexed into the interface transmission lines and scaled according to the ratio of the stripe area A; over the total TM surface area A,. The second section (Section II)
represents transmission lines showing the wave in air under the TM; due to the inclination of the drum, they bring different delays. At the interface between the canal (air)
and the membrane (Section III), the wave is split into a transmitted and a reflected part, computed from the knowledge of the reflection coefficient on the TM (see Fig. 2). In
the Section IV the transmitted part propagates on the TM toward the umbo (rightmost series of transmission lines) where finally, in Section V, all contributions are added and
then feed the OC. The reflected part at the canal/TM interface propagates in air back to the canal input. In the backward propagation, the wave coming from the OC is only
input into the TM superior region, where it is in contact with the manubrium, and is multiplexed and scaled according to the ratio of the stripes areas over the superior region
area, Ay,,. It propagates to the canal input using the same path than the forward-going wave. All contributions are then added before being input into the canal transmission
line. Note that our actual implementation takes into account the future possibility of adding an input from the middle ear cavity space into the inferior region, but these

(velocity) inputs are presently zeroed (far lower-right corner, labeled MEC).
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tion with the TM and reflected and transmitted parts are computed
from the function in Fig. 2: the reflected part is input into the back-
ward-going transmission line corresponding to the same annulus,
the transmitted part propagates on the TM towards the umbo.
The volume velocity contributions from all the annuli are summed
up at the umbo before being output to the OC model.

2.3. Ossicular chain model

The OC encloses the three ossicles - malleus, incus, and stapes -
and propagates the sound wave from the TM, at the umbo, to the
cochlea. The mechanical interactions between the three ossicles re-
sult in a lever ratio on the velocity and impedance (Guinan and
Peake, 1967; Puria and Allen, 1998). The OC is not modeled as a
pure delay line, as has been done for the TM or the canal, because
it is a lumped structure, thus cannot be appropriately represented
directly as a transmission line; in fact, it is well known that its
components could be considered, like filters, as altering the wave
in a frequency-dependent way. We have thus chosen to use a more
conventional representation, the lumped-parameter circuit from
Puria and Allen (1998), and O’Connor and Puria (2008). It has been
slightly modified for our purpose and especially, it has been imple-
mented in the time domain, so to be connected to the TM model.

Our lumped-parameter model for the OC is shown in Fig. 4.
Note that it is slightly different from the one we used in (Parent
and Allen, 2007):

1. the attic ligaments are now combined with the malleus in a sin-
gle two-port,

2. the transformer modeling the OC lever ratio is brought to the
left of the malleus,

3. the stapes is separated from the cochlea using the model by
Lynch et al. (1982), and is implemented as its own two-port,
to enable a more detailed access to its velocity.

2 C’lnl
R / 2

Mu/2  Mun/2 2Cn,

R/2

The malleus, incus, and stapes are represented by 2-ports,
which compute the forward and backward outputs from their for-
ward and backward inputs. The malleus 2-port includes the bone
itself, as well as the attic ligaments, and a shunt compliance, mod-
elling the incudo-malleolar joint. The incus 2-port is simpler and
includes the bone mass and the incudo-stapedial joint. The two
bones are associated with a stiffness representing the joint: this
stiffness is computed from the mass and the characteristic imped-
ance to assure the “matched-impedance” condition (Puria and Al-
len, 1998); i.e., the stiffness is adjusted so that the mass/stiffness
association generates no reflection. The stapes 2-port includes
the stapes, as well as the annular ligament stiffness and its associ-
ated resistance. The final load is the cochlea, modeled by a 1-port.

Each 2-port can be described by a symmetric series impedance
Z/2 and a shunt admittance Y, which are frequency-dependent.
Using subscript “1” to denote quantities on the left-hand side of
the 2-port and “2” for the right-hand side, we can write Kirchoff’s
laws in the frequency domain in terms of pressure and velocity as
the following matrix equation:

{pl}: 1+ 217 {pz} @
U Y 21 ||lw]

Introducing the medium characteristic impedance z,, and decom-
posing pressure and velocity into forward and backward compo-
nents, we also have on each side

pi = zo(ui" +uy), (5)
u=u —u;. (6)
Substituting Egs. (5) and (6) into Eq. (4), we obtain a matrix equa-

tion involving the volume velocity components, z, and the 2-port
elements, Y and Z as

][ L] 2

al

M2 M2 g Rl

E
Q 3 C’f”LU
D MALLEUS AND ATTIC LIGAMENTS INCUS STAPES
3 COCHLEA
% : My /14 Ioy /14 Sat /14
M
% My_ /14
I
Moy o
_l’_
]\/11—/2— ]1_/2_ 51,/2,

Fig. 4. Ossicular chain circuit representation. Each element is modeled by a 2-port with 4 filters given by the matrix of Eq. (7). The multipliers are frequency-dependent, and
thus must be implemented as convolutions in the time-domain. X, ,_ represents the filter computing the forward output from the backward input, X;_/;, the backward
output from the forward input, etc. The cochlear driving point impedance is modeled after Lynch et al. (1982). The OC lever ratio is represented by the transformer at the TM

Nj.

output, its ratio denoted N;.. Malleus characteristic impedance is matched with the TM central impedance brought to the right-hand side of the transformer, i.e., multiplied by
2
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where the Tj are fractions of polynomials in s, the Laplace variable.
Each output is then a combination of the two inputs, filtered by a
specific structure. Those filters are implemented in the time domain
using the bilinear transform, and of course by keeping track of each
filter’s internal state variables.

Our model parameters are shown in Table 1, and compared to
the values used by O’Connor and Puria (2008) (further denoted
0P08), when fitting their model to the mean of 16 measurements
on human temporal bones, coming from two different sessions.
Overall, both models are in close agreement, except:

e incudo-stapedial joint compliance: our model joint is much stif-
fer, by a factor around 135. Our hypothesis, inspired from Puria
and Allen (1998), is to treat the incus as a matched piece of
transmission line, hence computing its joint stiffness from its
mass so that its characteristic impedance would be matched to
the OC. This approach has not been used by OP08, with each
of their elements being adjusted separately,

e stapes and annular ligament: our model stapes mass is around
20 times larger and our annular ligament compliance 20 times
smaller. The product mass x compliance, commonly appearing
in our filters coefficients, will remain unchanged, but since the
ratio is different, the propagation is significantly altered (see
Egs. (1) and (3)).

These differences are discussed further, in Section 4.1.

3. Results
3.1. Normal ear

3.1.1. Average fit

In this section, we show the results of our model simulations
compared to experimental data, and we discuss the model perfor-
mance. We also detail the interpretation of reflectance data in a
more general manner (Voss and Allen, 1994; Feeney et al., 2003;
Allen et al., 2005; Hunter et al., 2008; Withnell et al., 2009).

Simulations for the normal ear are shown in Fig. 5 where they
are compared to the reflectance measurements of Voss and Allen

Table 1

Ossicular chain parameters values for our model, compared to the values reported by
O’Connor and Puria (2008), in the case of their fit to the mean of two measurement
sessions on human temporal bones (CGS units). Our values for the malleus two-ports
have been corrected by the lever ratio for proper comparison.

Parameter Value O’Connor and Puria
(2008), “AB”
TM characteristic impedance [g/(cm*s)] 161.75- 1050
808.77
TM area [cm?] 0.6 0.6
Malleus mass [g] 23%x107°  324x107°
Attic ligaments compliance [s?/g] 167x10¢ 198 x10°¢
Attic ligaments resistance [g/s] 150 140
Ossicles lever ratio 2 13
Incudo-malleolar joint compliance [s?>/ 268 x 10°®  6.85 x 10~/
g]
Incudo-malleolar joint resistance [g/s] 18.75 45.6
Incus mass [g] 998 x10* 730x1073
Incudo-stapedial joint compliance [s>/ 736x10°1° 1 x 10~
g]
Incudo-stapedial joint resistance [g/s] 75 304
Stapes footplate area [cm?] 320x102 3.14x10°2
Stapes mass [g/cm?] 63.51 3.55
Series annular ligament + round 513 x 10! 9.01 x1071°
window compliance [cm?s?/g]
Series annular ligament + round 1.50 x 10° 299 x 10°

window resistance [g/(cm?s)]

(1994). This particular dataset has been chosen because it is readily
available to the authors, and is widely recognized as a representa-
tive of normal human ears. Overall, the model is in good agreement
with the experimental data. The detailed, rapid variations of the
measurements are absent from the model, but the essential behav-
ior is captured in some detail. The power transmittance,
T = 10log,(1 — |#[*), shown in Fig. 5a, gives a useful summary of
the ear behavior: since it is on a decibels scale, the transmittance
is closely related (though not equal) to the middle ear transfer
function, hence its clinical advantage for hearing diagnosis (Allen
et al., 2005). The middle ear system roughly acts as a band-pass fil-
ter, energy being reflected below about 1 kHz due to the stiffness
components, and above 5 kHz due to the mass components. This
behavior is consistent across the different examples but +2 dB var-
iability appears at high frequencies, above 5 kHz. The pressure
reflectance magnitude plot (|2|), in Fig. 5b, shows the same behav-
ior, from the point of view of the reflected ear canal pressure or
velocity. Note how the reflectance magnitude shows more variabil-
ity than the power transmittance: as |#| approaches zero, a large
relative change 6#/|#| maps to a very small (much less than
1dB) change in 1 — |% + 62|

The behavior of the ear can be divided into three main fre-
quency regions: at low-frequencies, it is stiffness-dominated and
the transmittance rolls off by 6 dB per octave (|#| — 1 as f — 0);
at high frequencies it usually becomes mass-dominated, so that
in many normal ears, |T| decreases by a few decibels between 5
and 8 kHz, usually to reach values between —10 and —5 dB (|Z]
is between 0.6 and 0.9). In the mid-frequency range (1-5 kHz),
the ear is best matched with the canal and the transmittance is
at its maximum, fairly stable around —2 or —3 dB (reflectance is
at its minimum, usually between 0.4 and 0.6). This typical behavior
is usually well represented in artificial ears, such as the B&K4157
(shown here), or the DB-100 (Voss and Allen, 1994). Note that
the roll-off of the reflectance above 10 kHz may be more likely
due to limitations of the ER-10C earphone used for the measure-
ments, than to the impedance method and model. The main limi-
tation of the model is that it does not capture this transition
from the stiffness-dominated state to the mass-dominated state,
where human data show that reflectance has more across ears var-
iability with frequency.

The phase and group delay plots, in Fig. 5c and d, provide key
information about middle ear wave propagation. First, in the case
of a single major reflection on the eardrum, the phase is roughly
linear with frequency; other phase behavior means that the sound
has been reflected from another site, such as the stapes. The fre-
quency where the reflectance phase crosses —n (around 7 kHz in
these examples) is where a canal standing wave occurs, as con-
firmed by the minimum in the normalized impedance magnitude,
in Fig. 5e. Estimating and appreciating the position and magnitude
of such a canal standing wave is critical in the understanding of the
middle ear. These standing waves are the focus of several studies
(Stinson et al., 1982; Neely and Gorga, 1998; Scheperle et al.,
2008; Withnell et al., 2009), especially to applications of hearing
aid fitting. The round-trip delay can also be evaluated from the
phase slope, giving useful estimate of the residual canal length;
however this method can be inaccurate; in fact, the group delay
(the phase derivative) tends to be very noisy at high frequencies,
but still gives a relevant canal length estimate (Voss and Allen,
1994). Note that group delay plots shown here (Fig. 5d) have been
derived from a smoothed version of the phase (using an average fil-
ter) to reduce this variability.

Normalized impedance plots in Fig. 5e-h give useful informa-
tion about the actual impedance elements present in the propaga-
tion path. The impedance phase plot, in Fig. 5f, summarizes the
system behavior in a very concise way: it is stiffness-dominated
below about 0.8 kHz, then transitions to a “matched” state at
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Fig. 5. In this figure we compare our model [solid] to several experimental examples from Voss and Allen (1994), for the normal ear: a typical subject [dash-dotted], the mean
of all subjects [dotted], and the B&K4157 artificial ear [dashed]. Note that impedance plots refer to the normalized impedance, i.e., a dimensionless quantity. At low
frequencies, the impedance phase (Fig. 5f) is close to —n/2, underlining the stiffness-dominated state, then remains around —27/3 in the pass-band. The frequency where it
crosses 0 indicates the standing wave in the canal, which for typical normal human ears, occurs above 6 kHz.

mid-frequencies, and then eventually can become mass-domi-
nated in a limited frequency range around 10 kHz. The three exper-
imental curves shown are typical of the normal human middle ear
behavior; in particular, in the pass-band (1-6 kHz), the phase re-
mains roughly between —27/3 and —mn/4, before sharply shifting
to the mass-dominated state, approaching +n/2. The frequency
at which the impedance phase crosses 0 is highly significant: the
canal impedance has an anti-resonance there and it indicates the
frequency (and hence the spatial position) where the standing

wave (pressure and impedance minimum) occurs in the canal. This
frequency varies from one individual ear to the next, essentially
depending on their ear dimensions, but is typically above 6-
7 kHz in young normal ears. This anti-resonant frequency directly
correlates to the middle ear delay at high frequencies.

This transition, from stiffness to mass-dominated state, is typi-
cal of a closed transmission line, with the position of the first
impedance minimum being related to the cavity length, defined
by location of the TM. The real part of the normalized impedance
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(the resistance) mainly results from the system characteristic
impedance (from the input point of view) and is consequently usu-
ally around 1, the matched condition. Frictions in the middle ear,
which further dissipate energy, tend to add frequency dependency
below 0.3 kHz, and around 2 kHz in Fig. 5g.

The admittance (reciprocal of the impedance) real part, shown
in Fig. 5i, shows a large localized peak where the impedance is
minimal, corresponding to the frequency of the ear canal standing
wave. The estimation of this important frequency has implications
and applications to clinical diagnosis, especially for in-the-ear cal-
ibration protocols (Withnell et al., 2009).

Delays can be easily estimated by a regression of reflectance
phase with frequency. We have estimated delays in the propaga-
tion path by looking at the phase shift of the forward wave and
we conclude that:

o TM one-way delay: 24 ps,
e OC one-way delay: 9 ps.

Note these delays are different from the ones usually computed
from the total pressure or velocity, including both forward and re-
flected waves. Estimating the delay from the forward path esti-
mates the actual physical delay. The total pressure estimate can
be quite different.

3.1.2. Individual fits

In the previous section, we have verified that the model was
able to capture the average behavior of the human ear. In this sec-
tion, we try to fit the model to individual data, measured by Voss
and Allen (1994). The subjects shown here have been randomly se-
lected, with no a priori knowledge of their impedance behavior.
The results of our individual fits are shown on Figs. 6-8. Adjusting
the model parameters to best fit a specific dataset can be a very
time-consuming and tedious process. However, it is generally pos-
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sible to achieve a reasonable - though, less accurate - fit with lim-
ited adjustments. This is the approach we have followed in this
section. It is quite clear that the model is too simple to deal with
the subtle variations of each subject, but we are indeed able to ad-
just it to follow the overall trends.

Below are briefly summarized the specificities of each subject
(compared to the average case), from our model point of view:

e Subject 3: increased ossicles mass,

e Subject 9: decreased ossicles mass, increased stiffness,

e Subject 10: reduced ear dimensions, increased stiffness, and sta-
pes mass.

3.2. Otosclerosis

The term “otosclerosis” means “abnormal bone growth in the
middle ear”, but is used clinically to describe the fixation of the sta-
pes footplate to the oval window of the cochlea, due to an abnor-
mal growth of the bone. Any such stapes fixation greatly impairs
movement of the stapes, and therefore transmission of sound into
the inner ear. Additionally, the cochlea round window can also be-
come sclerotic, and in a similar way impair movement of sound
pressure waves. From our model point of view, this pathology is
modeled by the increase of the stapes mass and of the annular lig-
ament joint stiffness. We have defined an otosclerosis variable
(factor), denoted otoscl (otoscl = 2, in our simulations), and per-
formed the following transformations:

e stapes mass: Ms—M; x otoscl'”,
e annular ligament stiffness: Kq—Kq x otoscl™®.

Furthermore, the canal length was increased to 7 mm, due to a
different insertion depth in these measurements. The values for
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Fig. 6. Model (solid line) fitted to subject 3 from Voss and Allen (1994) (dash-dotted).
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Fig. 8. Model (solid line) fitted to subject 10 from Voss and Allen (1994) (dash-dotted).
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otoscl and its exponents have been empirically derived, with the
intention to best fit experimental data. The use of a single param-
eter ensures that the various contributions are varied systemati-
cally. Note that the combination of parameter values to obtain
such results may not be unique, but the one we detail here has
been derived through our physical insight of the ear impedance,
and consequently makes physical sense. The consequences of oto-
sclerosis are mainly seen at low frequencies, where the stiffness-
dominated region has a wider bandwidth, with a transition to
the matched state shifted to higher frequencies. The model predic-
tions for this case are shown in Fig. 9. The high-frequency limita-
tions of the model previously mentioned are more obvious here,
especially in the reflectance plot, in Fig. 9b, as the solid line; in fact,
the model directly transitions from the stiffness-dominated state
to the mass-dominated state, and the reflectance increases signifi-
cantly above 2 kHz. This is obviously different from real otosclerot-
ic ears which have a behavior quite similar to a normal ear above
2 kHz, with a smaller reflectance magnitude. It seems clear that
some structure is missing in the model which would play a critical
role in the otosclerotic ear between 3 and 5 kHz. However, the gen-
eral behavior is still well captured by the model, as can be seen
from the other plots in Fig. 9. It could simply be that the model
parameters need further refinement.

3.3. Otitis media with effusion

Otitis media results from an inflammation of the Eustachian
tube, typically in infants. The tube then no longer equalizes the
pressure in the middle ear and throat, which results in fluid flow-
ing back to the middle ear cavity and constraining significantly the
TM and OC movements, depending on the seriousness of the
pathology. Physically, this results in the system being much stiffer
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and lossy (more friction). In our model, this is represented by a
parameter ome (ome = 7, in our simulations), and the following
parameters changes:

e middle ear characteristic impedance: zye—zn, x ome,

e malleus and incus mass: My, —M; x ome'!?,

e incudo-malleolar and incudo-stapedial
I<im,is'_’1<im.i5 X Ome]j‘

e stapes mass: My—M; x ome!2,

o annular ligament stiffness: Ky—Kg x ome'4,

e annular ligament resistance: Ry—Ry x ome®>,

joints  stiffness:

Here the residual canal length is 1 mm. Obviously the model
modifications are extensive. As for the otosclerosis example, the
values for ome and its various exponents have been manually ad-
justed to match experimental data, and the resulting combination
may not be unique. The use of a single parameter, ome, ensures
consistency among all affected parameters, but at the same time
is limiting.

The resulting predictions are shown in Fig. 10, and compared to
experimental data measured in two infants (Gravel, 1999-2002).
From the reflectance magnitude point of view, the behavior is quite
similar to otosclerosis, with an increased stiffness shifting the first
resonance to higher frequencies. The matched band is even more
restricted. The main difference with otosclerosis resides in the
phase, and thus group delay; in fact, we observe a major disruption
around 3 kHz, probably due to a secondary reflection site from the
stapes. The round-trip delay is also much greater at that frequency
(425 ps vs. less than 100 ps in the sclerotic ear), suggesting that
energy is trapped between two reflection sites, and thus not been
transmitted into the cochlea. The model results are in agreement
with experimental measurements but, again, we can underline

Reflectance Magnitude

0.2
0.5 1 5
Frequency [kHZz]
(b) [R(f)]
Reflectance Group Delay

0.25
- 0.2
£
&
s
b=a
T
1]

< 0.05

0.5 1 5
Frequency [kHz]

(D) 7(f)

Fig. 9. Model simulation for the otosclerotic ear (solid line). Experimental data has been collected on a human patient, up to 6 kHz (Allen et al., 2005). The left ear is shown in
dash-dotted lines, and the right ear in dotted lines. The thick dashed line is the average normal ear from Fig. 5, for reference.
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Fig. 10. Model simulation for the ear with otitis media with effusion (solid line). Two typical human ears with otitis media are represented in dash-dotted and dotted lines.

The thick dashed line is the average normal ear from Fig. 5, for reference.

that the system behavior seems more complex than the model,
especially at high frequencies. The model in its current form is
too limited to accurately account for the subtle behavior observed
in those pathological ears, yet it captures the main trends.

3.4. Impedance matrix

In order to further evaluate the behavior of the model, we com-
pute its impedance matrix, defined as

|:pec:| _ |:le le:| |:uec:|" (8)
Dt Zy Iy || Uy
where p,. and u,, are the pressure and volume velocity at the canal

input, and p; and uy their equivalents at the stapes. The impedance
matrix elements are computed as follows:

m:%%J (9)

Ziy = —Pec (10)
Sl tpe=0

Zoy = % = (11)

Iy = —Z—Z o’ (12)

Note the negative signs when the model is driven in reverse. These
equations become even simpler in our case, where the input veloc-
ity is a unity pulse. For example, when driving the model from the
canal, we get

Pec

Zn :TeMS[:O :pec|u5f:07 (13)
p

2= g ™ Pubcco (14)

The equations are very easily implemented in our wave model be-
cause they merely correspond to a one-line modification of the code
at each termination of the transmission line. Alternatively, the cor-
responding admittance matrix can be computed by changing the
boundary conditions so that the input pressure is a unity pulse
and the total pressure at the other termination is null.

In practice, we set a total reflection on each side (reflection coef-
ficient of 1, so that the total volume velocity is 0) and input a single
velocity pulse at each termination, depending on the tested condi-
tion. We have computed the impedance and admittance matrices
at different locations along the OC and realized that the model is
very sensitive to these specific boundary conditions, characteristic
of a low-loss delay network; in fact, we had to slightly increase the
attenuation factor (see Section 2.1) to 0.3% so that the simulation
did not diverge. Note that this damping does not correspond to a
specific physical element of the propagation path, rather to the
medium thermal and viscous losses; mathematically, those would
correspond to a non-zero real part of the propagation factor (see
Eq. (1)) (Keefe, 1984). Besides, without this added loss, some com-
putations would output non-physical driving-point impedances
(Z11 or Zy; phase outside [-7/2; +m/2] radians at poles or zeros),
while the admittance would be physical, or vice-versa. A tentative
explanation for this instability is described further.

We have compensated for the various transformer ratios along
the OC, and we have computed normalized impedances, i.e., the
pressure is the sum of the velocity components, and is not multi-
plied by the local characteristic impedance. This removes the dif-
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ferent impedance transformations, simplifying comparisons be-
tween the two boundary conditions.

The elements of the impedance matrix computed between the
canal input and the stapes are shown in Fig. 11. The low-frequency
gain of the impedance is the TM transformer ratio, i.e., 30/N; (see
Section 2.2). The two driving-point impedances (when the pressure
and velocity are measured at input), Z; and Zy,, are indeed charac-
teristic of a closed transmission line, as could be expected. The two
transfer impedances, Z1, and Z,;, are more difficult to appreciate:
they are not driving-point impedances, since their pressure and
velocity are measured at different locations, resulting in their
phase being outside [—7/2; +m/2] radians, due to the propagation
delay between the two locations. Their responses are similar in
trend, but they differ noticeably between 2 and 12 kHz. The differ-
ence is, at most, 0.7 dB in magnitude (8% error), and 0.27 radians in
phase (30% error).

These errors reveal that the model is not perfectly reciprocal,
and underline a limitation of our current implementation. Further
investigation revealed that time-domain artifacts could be the
source of the model instability in these specific boundary condi-
tions, and also explain its non-reciprocity. More precisely, we have
verified that the “non-reciprocal” behavior of the model was
brought by the TM. These time artifacts are a direct consequence
of our implementation and of the fact that the TM delays, as being
necessarily multiples of the sampling period, are not perfectly
aligned, resulting in a slight desynchronization of the different
lines (see Parent and Allen (2007), Fig. 6). This could be fixed, for
example by using all-pass filters before summing the different con-
tributions, to align the delays; however, we have not pursued this
possibility here.

3.5. First conclusions

In general, the model is in agreement with experimental data.
The match is very good with average normal data, but is poorer
as the response complexity increases, typically for individual data,
or pathological ears. Modifying the model parameters in a physical
manner to follow the different behaviors does alter the model re-
sults in a predictable way.

The impedance matrix computed from the model is also physi-
cal and corresponds to our intuitive understanding of the propaga-
tion. The computation of the transfer impedances reveals that the
TM introduces a slight non-reciprocal behavior, possibly due to the
quantization of the TM delays. We argue that while this inaccuracy
requires careful investigation, it does not invalidate the modeling
approach, i.e., to represent the TM by a combination of delay lines;
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in fact, a more sophisticated implementation of these delays is
likely to improve the model behavior.

Those are promising results: eventually, with a more sophisti-
cated model, we hope to be able to more accurately simulate indi-
vidual data and refine our interpretation of pathologies. Also, we
believe that the ability to discriminate between the forward and
backward components of the sound wave, and the consequent
ability to estimate forward and backward delays, can be very help-
ful in providing understanding to on-going work aimed at isolating
the forward wave reflected from the eardrum.

These results confirm the relevance of our distributed model of
the TM. We have deliberately chosen to simplify it, and focus on
the wave propagation pattern. The extent to which we match
experimental data demonstrates that the TM acts as a transmission
line. More specifically, it suggests that complex motion and multi-
moding of the eardrum may not be critical to the general wave
propagation. Rather it is the impedance matching horn properties
of the TM that are the most important. These necessarily introduce
delay.

3.6. Validation with independent data

In order to further validate the model, we now compare it to
data which have not been used in its derivation. Here, we use tem-
poral bones results published by OP08, with their frequency-do-
main model. Their model uses a very similar lumped-parameter
circuit for the ossicular chain to ours, coupled to a delay line rep-
resenting the TM. Their parameters are adjusted to fit transfer
functions measured on human temporal bones, collected during
different measurement sessions, and then separated in ensembles
A ((O’Connor and Puria, 2006), 4 bones) and B ((O’Connor et al.,
2008), 12 bones). Their model is adjusted to fit each individual
measurement, plus the mean of all 16 bones (denoted “AB”). For
the comparisons shown in this section, our model parameters have
not been modified, but are the ones from the normal ear case. In
the following figures, for each dataset (A and B), we show the mean
of all measurements in dotted line and the mean of the corre-
sponding fitted models in dashed line with our model the solid
line.

3.6.1. Middle-ear transfer function

Fig. 12 shows the middle ear transfer function, computed as the
ratio of the stapes velocity to the canal pressure at the eardrum.
The model from OPO8 has been fitted to those measurements
and consequently matches the experimental data very well. Note
how the transfer function magnitude rolls off above 1 kHz as the
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Fig. 11. Impedance matrix for the middle ear model, between the canal and the stapes. The impedance magnitude is shown on the left, the phase on the right. In both plots,
the two driving-point impedances, Z;; and Zy,, are shown in solid and dashed lines, respectively. The transfer impedances, Z;, and Z;, are shown in dotted and dash-dotted

lines, respectively.
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Fig. 12. Our model compared to data and model simulations from OPO08: ratio of the stapes footplate velocity over the canal pressure at the eardrum, magnitude (top row)
and phase (bottom row). For each data set (A and B), mean experimental data is shown in dotted line, and mean model simulation by OP08 in dashed line. Our model is shown
as the solid line, uncorrected (no markers) and corrected by (1 + #)/2 (upwards triangles). The third column represent the OP0O8 model fit to the mean measurement from

sets A and B.

reciprocal of the frequency (—6 dB per octave). This behavior is
consistent with previously-published temporal bones data (Aibara
et al., 2001) and living ears (Huber et al., 2001) but is, however,
quite surprising since it does not correspond to our intuitive
understanding of the middle ear, which would be expected to have
a flat response between 1 and 4-5 kHz, as is typically seen in hear-
ing thresholds (Fletcher and Munson, 1933).

Our model (solid line) is in agreement with OP08 responses be-
low 1 kHz, except for a 2 dB gain difference; this is due to our ossi-
cles lever ratio being slightly larger. However, above this
frequency, our transfer function remains flat up to 5 kHz, where
it again starts to rise, reaching a resonance peak at 9 kHz, before
sharply rolling off above 10 kHz. The 9 kHz resonance is due to a
corresponding minimum in the canal pressure, created by the
interaction of forward and backward waves in the canal, i.e., the
well-known canal standing wave. The degree of peaking depends
directly on |#| at that frequency, as discussed in Section 3.1.1
and Fig. 5. A null in the pressure corresponds to a peak in the trans-
fer function (at 7 kHz in Fig. 5e). Note that our model transfer func-
tion is very similar in shape to the ear input admittance magnitude
(Fig. 5i). This is because both have a common 1/(1 + %) factor:

11-2
S (15)
Vstapes _ Vstapes _ Vstapes (16)
P“’”al P:unal + P;mal P:anal(‘1 + %) ’

where P7, and P_,, are the forward and backward components of
the canal pressure wave.

Following the method suggested by Withnell et al. (2009), we
also display our model transfer function corrected by (1 + #)/2
(upwards triangles) which removes the standing wave effect and
is more useful for interpretation. The data from OP08 does not
show any major standing wave because the measurements have
been averaged; as the effect is very measurement-specific, it disap-
pears with the mean. For the same reason, we have not corrected
these responses by (1 + #)/2 because only the mean reflectance
was available to us.

The discrepancy is even more obvious in the phase plots, in the
bottom row; in fact, our model shows a much smaller delay. The
slope rupture at 9 kHz corresponds to the canal standing wave,
and disappears with the corrected response. We have computed
the group delay of our model transfer function, by linear regression
of the corrected phase between 2 and 11.1 kHz (cf. OP08, page
209), which yielded a value of 43.6 us, compared to means of
127.1 and 54.9 ps, for set A and set B, respectively (Table II in
OP08). Possible reasons for these very large differences are dis-
cussed in Sections 3.6.3 and 4.2.

3.6.2. Ossicles velocities

The ratios of ossicles velocities are shown in Fig. 13. Looking at
the magnitude plots (top row) for V/V, (no markers) and V;/V,
(upwards triangles), we observe a similar discrepancy between
our model and that OP08; namely, above 1 kHz, their model and
experimental data rolls off, while our model remains flat, up to
5 kHz. Still, the general behavior is rather well captured by our
model. V/V; rolls off at 5 kHz in the data, and at 17 kHz in our
model.

The linear regression on the V/V, phase between 2 and 11 kHz
gives us an OC delay of 29.8 ps, while estimated at 51.6 pis in set A,
and 37.5 s in set B. Subtracting this delay from the one computed
on the global transfer function in the previous section, we can esti-
mate the TM delay at 12.1 ps. Estimates from OP08 gave 75.7 s for
set A, and 17.6 pus for set B. Note that this TM delay is computed
using the total velocity, i.e., the difference between the forward
and reflected waves; as a consequence, it results in a different de-
lay estimate than the one using the sole forward wave, presented
in Section 3.1.1.

3.6.3. Complex reflectance

The reflectance plots in Fig. 14 compare our model in solid line
to measurements in dotted lines from Hudde (1983) (upwards tri-
angles), Farmer-Fedor and Rabbitt (2002) (downwards triangles),
and Voss and Allen (1994) (data not used to fit the model: a differ-
ent subject from the one shown in Section 3.1.1 with square mark-
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A. Scet A ensemble B. Set B ensemble

C. Model fit to mean (AB)
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Fig. 13. Our model compared to data and model simulations from OP08: ratio of ossicles velocities, magnitude (top row) and phase (bottom row). Velocities at umbo, incus,
and stapes are denoted V,, V;, and V, respectively. V, /V, is shown with no markers, V;/V, with upwards triangles, and V. /V; with squares. Our model is the solid line, model
simulations from OPO8 are the dashed lines, and their experimental data are the dotted lines. No experimental data is available for V. /V;. The third column represent their

model fit to the mean measurement from sets A and B.
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Fig. 14. Our model compared to model simulations from OP08 and other experimental data: reflectance, magnitude (left) and phase (right). Our model is the solid line, the
model from OPO8 fitted to dataset A is the dashed line, and their model fitted to dataset B is the dash-dotted line. Experimental data are in dotted line, with the upwards
triangles (Hudde, 1983), downwards triangles (Farmer-Fedor and Rabbitt, 2002), and squares and diamonds another subject and the DB-100 coupler from Voss and Allen
(1994), respectively. The model from OPO8, fitted to middle ear transfer functions, shows clear oscillations above 1 kHz, which could point out to a delay error.

ers, and the DB-100 coupler with diamond markers), as well as the
model from OPOS fitted to dataset A (dashed), and B (dash-dotted).
We have dropped the data from Voss et al. (2000) published in
OPO08 because it had been corrected for the middle ear cavity
impedance. The original OPO8 paper reports these data as input
impedance plots, but those are difficult to interpret due to the
influence of the measurement probe placement, which |#]| is insen-
sitive to. The complex reflectance separates the impedance-mis-
match effect in its magnitude, from the delay effect in its phase
and is consequently more relevant. We have converted the MKS
impedance data from OP08 using the same characteristic imped-
ance for all those measurements (3.28 x 107 kg/m*s, provided in
their paper), and 1.08 x 107 kg/m*s for our model.

The magnitude plot, on the left, shows good agreement between
our model and the measurements from Hudde (1983), Farmer-Fe-
dor and Rabbitt (2002), and Voss and Allen (1994). The two models
from OP08 show serious discrepancies with normal data: they lack
normal stiffness at low frequencies and show unusual ripples at
and above 1 kHz.

The phase plots show this discrepancy in an even more obvious
manner. Our model, as well as the measurements from Hudde
(1983), Farmer-Fedor and Rabbitt (2002), and Voss and Allen
(1994), have linear phase, with a slope which characterizes the
round-trip delay. However, the phases from OP08 are non mono-
tonic, which demands several reflection sites along the propaga-
tion path: namely, the sound wave is trapped between those
reflection sites, causing an increase in the overall system delay.
This last observation is consistent with our previous analysis of
the transfer function delay.

4. Discussion
4.1. Velocimetry and reflectance
On the one hand, we have observed that our model reasonably

matches reflectance data, even when it is compared to data not
used for the model parameters estimation; however, the agree-
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ment is less clear regarding middle ear transfer functions. On the
other hand, a model which has been designed to fit middle ear
transfer functions seems to fail to match the reflectance data.

This observation raises the following important question: are
ossicle temporal bone velocity measurements compatible with
normal (living ears) impedance measurements? Temporal bone
velocimetry is an invasive measurement and its properties seem
to differ from living ears, especially when they have been frozen.
The OPO8 study also reports velocimetry in living ears (Huber
et al., 2001) but those measurements are performed during clinical
surgery, hence with altered ears. The key difference seems to re-
side in the middle ear delay; in fact, velocimetry measurements
provided here, and referenced by O’Connor and Puria (2008) show
much larger delays than typical live human impedance
measurements.

We have run our simulation using middle ear parameters values
from OPO8 (see Section 2.3) and we did not get a normal middle ear
impedance; in fact, using OPO8 parameters added delay and com-
pliance, and brought the first impedance minimum to much lower
frequencies. We have tried to fit our model to the ME transfer func-
tion data shown in Section 3.6.1, but could not mimic the roll-off
above 1 kHz, except by using a very large mass, which also resulted
in a narrower bandwidth. We believe that it is not possible to ob-
tain the behavior presented by OP08 with our model and physical
values for its parameters. At this point, we cannot justify these dif-
ferences, except that our model has been fitted to impedance data
in living ears, while the OPO8 model has been fitted to velocity
measurements in temporal bones.

This discussion is limited to the OPO8 model which has been fit-
ted to a given measurement, and then used to simulate another. It
would be better if we could rely on measurements performed in
the same ear, showing both velocimetry and impedance or reflec-
tance. Our guess is that such impedances would show a similar
behavior.

4.2. Middle-ear delays

Delays in the middle ear have usually been computed from
pressure or velocity measurements. With our model, it is possible
to compute delays for only one component of the wave, and hence
circumventing the complex interactions between the forward and
backward waves (Neely and Allen, 2009). Indeed, the differences
between our delays estimated on the forward wave (Section 3.1.1)
and on the transfer functions (or “composite” delays) reveal that
the two measures are not equivalent, due to standing wave inter-
actions (pressure or impedance poles).

Unfortunately, forward and backward delays cannot be easily
separated in experimental measures, and consequently composite
delays are measured, not forward delays (though this separation is
possible given the measured reflectance (Withnell et al., 2009)).
Several publications (Scheperle et al., 2008; Withnell et al., 2009)
have suggested that the cochlea pressure is best estimated from
the input forward pressure, not the composite pressure, which in-
cludes the reflected wave. Thus, estimating the middle ear forward
wave propagation time from the reflectance group delay seems like
the better approach. As noted, this delay is the reflectance group
delay, which is the time needed for the forward wave to reach
the cochlea, and then return to the microphone (twice the forward
delay).

4.3. Summary

The wave model presented here has originally been designed to
match input impedance data from cat ears. Its parameters have
been adjusted to take into account the anatomical differences be-
tween cats and humans, and to fit typical measurements from Voss

and Allen (1994), along with pathological middle ear data. The
resulting simulations are presented in this study. Note that the
model design has not been changed between the two studies.
Overall, the model is in good agreement with experimental data
from different sources and is able to capture the basic behavior
of various common pathologies by merely adjusting its parame-
ters, in a physical and meaningful way. The model is not ad-hoc:
its design relies on well-established physics principles and its
parameters values are consistent with previously-published simi-
lar models (Lynch et al., 1982; Puria and Allen, 1998; O’Connor
and Puria, 2008). However, it is clear that it is still limited and can-
not account for subtle natural variations observed in human data
(i.e., above 5 kHz).

The goal of this study is not to compete with the accuracy of
some recent models, especially those using finite-elements decom-
position (Funnel and Decraemer, 1996; Fay, 2001). It is clear that
those works are much more sophisticated and consequently are
able to match experimental data to a greater extent. This work
demonstrates that the time-domain wave-variable approach is va-
lid to model the middle ear. It could eventually lead to significant
improvements in the understanding of complex ear phenomena,
cochlear non-linearities being one typical example (Sen and Allen,
2006).

A key feature of our modeling approach is the ability to discrim-
inate between the forward and backward wave components. This
opens the way to more detailed calculations on each of the compo-
nents, and especially the forward wave. This study has underlined
the possibility to estimate the propagation delay in the canal to the
eardrum, but also on the TM and in the ossicles. Appreciating the
propagation properties of the forward wave appears to be a prom-
ising idea to understand the canal response, and in particular its
standing wave (Scheperle et al., 2008; Withnell et al., 2009), and
a time-domain approach seems very relevant in this regard.

On a related note, it is our conviction that the issue of delays in
the middle ear should be addressed more thoroughly. Our compar-
isons with data from temporal bones measurements reveal that
usual impedance data may not be compatible with those, hence
suggesting that the middle ear structure and behavior could be al-
tered in subtle ways when performing velocimetry measurements
on temporal bone preparations. A closely related question is the
forward wave delay, compared to the composite (forward and re-
flected) wave delay, when standing waves are present.

One of the advantages of this approach is its simplicity: because
it directly deals with wave components in the time domain, it is
highly physical and intuitive. The implementation is simple en-
ough so that the gist of it can easily be reproduced. This simplicity
has a direct pay-off in terms of computation time and as a peda-
gogical tool. More specifically, we have built our approach on try-
ing to simplify the TM to the greatest extent, though still taking
into account its impedance-matching feature. The fact that, despite
this extreme simplification, our model is able to reasonably match
experimental data under many conditions, suggests that complex
modes frequently observed on the TM are not critical to the behav-
ior of the system.
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